High Throughput Sequencing National Germplasm Resources Laboratory

Dimitre Molloy

UNITED STATES DEPARTMENT OF AGRICULTURE

National Germplasm Resources Lab

Some NGS projects in my group Plant genera:

<u>Saccharum</u> Sorghum

Zea

Miscanthus

Cynodon

Lolium

Stenotaphrum

Rottboelia

Panicum

Phyllostachys

Poa

Petunia

Medicago Syringa

Rosa

Nicotiana Veronica

Iris

Lindera

Fraxinus

Rubus

Morus

Ficus

Carica

PGQP - NGRL collaboration

Stakeholders

USDA APHIS

USDA ARS

PGQP: Plant Germplasm Quarantine Program

NGRL: National Resources Germplasm Laboratory

HTS primary use in USDA programs*

- To evaluate shorter quarantine time
- To establish regulatory policy and permitting conditions
- To counter increased risks due to trade
- To develop policy regarding outcome of HTS
- To validate and establish HTS standards
- New virus discovery and characterization
- *USDA APHIS -- USDA ARS

HTS: Technological challenges

- Developing efficient sample preparation methods for large scale application
- Developing bioinformatics algorithms to efficiently separate pathogen and host sequences

What is HTS positive sample?

Questions:

- How many total reads per sample?
- What is acceptable contig length?
- What is acceptable sequence depth?
- How many reads mapped into viral contig(s)?

Factors to consider

- Total number of reads
- Percent sampled (subsample)
- Paired vs. single-ended reads
- Number of Contigs
- Reads Length
- Virus taxa
- Host
- Contig length
- Reads mapped
- Target sequence coverage depth

Saccharum spontaneum accessions in Houma

MPTH97-461

MPTH98-388

Thank you